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Direct numerical simulations (DNS) of a supercritical temporal mixing layer are
conducted for the purpose of exploring the characteristics of high-pressure tran-
sitional mixing behaviour. The conservation equations are formulated according to
fluctuation-dissipation (FD) theory, which is consistent with non-equilibrium thermo-
dynamics and converges to kinetic theory in the low-pressure limit. According to FD
theory, complementing the low-pressure typical transport properties (viscosity, diffu-
sivity and thermal conductivity), the thermal diffusion factor is an additional transport
property which may play an increasingly important role with increasing pressure. The
Peng–Robinson equation of state with appropriate mixing rules is coupled to the
dynamic conservation equations to obtain a closed system. The boundary conditions
are periodic in the streamwise and spanwise directions, and of non-reflecting outflow
type in the cross-stream direction. Due to the strong density stratification, the layer is
considerably more difficult to entrain than equivalent gaseous or droplet-laden layers,
and exhibits regions of high density gradient magnitude that become very convoluted
at the transitional state. Conditional averages demonstrate that these regions contain
predominantly the higher-density, entrained fluid, with small amounts of the lighter,
entraining fluid, and that in these regions the mixing is hindered by the thermodynamic
properties of the fluids. During the entire evolution of the layer, the dissipation is over-
whelmingly due to species mass flux followed by heat flux effects with minimal viscous
contribution, and there is a considerable amount of backscatter in the flow. Most of
the species mass flux dissipation is due to the molecular diffusion term with significant
contributions from the cross-term proportional to molecular and thermal diffusion.
These results indicate that turbulence models for supercritical fluids should primarily
focus on duplicating the species mass flux rather than the typical momentum flux,
which constitutes the governing dissipation in atmospheric mixing layers. Examination
of the passive-scalar probability density functions (PDFs) indicates that neither the
Gaussian, nor the beta PDFs are able to approximate the evolution of the DNS-
extracted PDF from its inception through transition. Furthermore, the temperature–
species PDFs are well correlated, meaning that their joint PDF is not properly ap-
proximated by the product of their marginal PDFs; this indicates that the traditional
reactive flow modelling based on replacing the joint PDF representing the reaction
rate by the product of the marginal PDFs is not appropriate. Finally, the subgrid-scale
temperature–species PDFs are also well correlated, and the species PDF exhibits im-
portant departures from the Gaussian. These results suggest that classic PDFs used in
atmospheric pressure flows would not capture the physics of this supercritical mixing
layer, either in an assumed PDF model at the larger scale, or at the subgrid scale.

† Author to whom correspondence should be addressed: Josette.Bellan@jpl.nasa.gov
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1. Introduction

Supercritical fluid disintegration is of relevance to many power producing devices
operating at high pressure: liquid propulsion rockets, diesel and future gas turbine
engines are only a few examples. Some natural phenomena, such as gaseous planet
(e.g. Jovian) atmospheres, obey similar physics. Despite the considerable relevance,
the understanding of turbulent supercritical fluid disintegration is limited to a few
experimental observations. Following the pioneering work of Brown & Roshko (1974)
with density-stratified spatial mixing layers and the further experiments of Atsavapra-
nee & Gharib (1997) with stratified temporal mixing layers, the more recent Mayer
et al. (1996, 1998) and Chehroudi, Talley & Coy (1999) observations of jets focus on
fluid disintegration at different pressures. A striking finding of all the most recent
experiments is the difference between fluid disintegration at subcritical and super-
critical pressures (with respect to the fluid in the jet); Oschwald & Schik (1999)
note that “The thermodynamic state of an injected supercritical fluid is dominant in
controlling the jet disintegration. Differences in the injection velocity or momentum
flux play a minor role”. Whereas atomization of a jet results in the formation of
a multitude of ligaments and drops as observed by Chehroudi et al. (1999) under
subcritical conditions, past the critical point of the fluid, disintegration assumes the
aspect of what Chehroudi et al. (1999) have termed ‘fingers’, or ‘comb-like structures’
at transcritical conditions, having an increasingly gaseous appearance with increasing
pressure. Raman scattering measurements of the radial density in free nitrogen jets
at 4 MPa by Oschwald & Schik (1999) depicted sharp profiles independent of the
injection temperature. This indicates that the occurrence of sharp density gradients
may be a distinctive optical feature for some species in environments at supercritical
conditions.

In the realm of supercritical jet simulations, Bellan (2000) remarks that there are
no models incorporating even minimal information necessary for supercritical fluid
description, such as transient effects. This dearth of such jet simulations suggests that
it is first appropriate to investigate simpler geometric configurations, such as mixing
layers, particularly temporal ones since they benefit from additional computational
simplicity. Supercritical temporal mixing layers are density stratified, similarly to
those studied by Cortesi, Yadigaroglu & Banerjee (1998) and Cortesi et al. (1999);
however, the former incorporate additional effects associated with real gas equations
of state (see Harstad, Miller & Bellan 1997) and an enlarged transport matrix (see
Harstad & Bellan 2000). This enlarged transport matrix contains, in addition to the
familiar, low pressure, diffusion coefficients and thermal conductivity, new transport
coefficients, termed the thermal diffusion factors: αT,αβ , where the subscripts α and
β refer to the species. Harstad & Bellan (2000) showed that according to the form
of the heat flux, one may define two types of thermal diffusion factors, which are
related by a thermodynamic function associated with the species. The different role
of these two types of αT,αβ in two-dimensional mixing layers was examined by Miller,
Harstad & Bellan (2001) who also conducted a three-dimensional direct numerical
simulation (DNS) of a supercritical temporal mixing layer for a single initial Reynolds
number (see definition in § 3), Re0 = 400. Even for this mixing layer that did not
reach transition, one could detect the distinctive regions of large density gradient
magnitude optically observed in experiments (see Miller et al. 2001). Although spatial
and temporal mixing layers are inherently different, Metcalfe et al. (1987) remark that
they share common optical characteristics. Therefore, the initial optical agreement
between observations and the simulation is encouraging.
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The lack of mixing transition in the study of Miller et al. (2001) was scrutinized
from an enlarged database by Okong’o & Bellan (2000) who traced its origin to the
competing influences of entrainment, producing strong density gradients (a stabilizing
effect), and mixing, reducing the density gradients (a destabilizing effect). These
density gradient regions played a considerable role in vorticity production, which was
concentrated therein and was predominantly due to the baroclinic torque (Miller et
al. 2001). Moreover, these regions also played a pivotal role in the lack of transition
through damping of the small scales (Okong’o & Bellan 2000).

However, as discussed above, most practical interest is in turbulent features of jets
and mixing layers. The present study is devoted to the investigation of supercritical
mixing layer transition and also of associated special flow features that might not
be encountered in gaseous layers. In § 2 of this paper we derive the conservation
equations for an arbitrary number of species, based on the validated fluid model of
Harstad & Bellan (2000); these equations reduce to those of Miller et al. (2001) in
the case of binary species. The configuration and simulation initial and boundary
conditions are explained in § 3, while the numerics is described in § 4. The general
mixing layer evolution is discussed in the first subsection of § 5, and the behaviour
of crucial variables at transition is illustrated and discussed in the next subsection.
Also in § 5, the results are analysed in terms of the irreversible entropy production,
i.e. the dissipation, and the contribution of various phenomena to the dissipation is
examined. Furthermore, the capability of the ‘assumed’ probability density functions
(PDFs) method is investigated, and the potential of the assumed PDF method
for obtaining the filtered density function for use in large-eddy simulation (LES)
is explored. The final section is devoted to a summary, conclusions, and a brief
discussion of directions for further investigations.

2. Conservation equations
The conservation equations originate from the fluctuation-dissipation (FD) theory

of Keizer (1987). This theory is consistent with non-equilibrium thermodynamics
and converges to kinetic theory in the low pressure limit. It also relates, from first
principles, fluxes and forces; this relationship appears only heuristically in continuum
theory through an assumed extension of kinetic theory expressions. The FD theory
leads to general expressions for the mass and heat fluxes in the evolution equations
for the conservative variables; in this section we present both the general form, and
the form specific to the heptane–nitrogen mixture under consideration.

2.1. Dynamic conservation equations

The compressible form of the conservation equations is

∂ρ

∂t
+

∂

∂xj
[ρuj] = 0, (2.1)

∂

∂t
(ρui) +

∂

∂xj
[ρuiuj + pδij − τij] = 0, (2.2)

∂

∂t
(ρet) +

∂

∂xj
[(ρet + p)uj − uiτij + qIK,j] = 0, (2.3)

∂

∂t
(ρYα) +

∂

∂xj
[ρYαuj + jαj] = 0, α ∈ [1, N], (2.4)
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where t denotes the time, x is a Cartesian coordinate, subscripts i and j refer to the
spatial coordinates, ui is the velocity, ρ is the density, et = e+uiui/2 is the total energy
(i.e. internal energy, e, plus kinetic energy), p is the thermodynamic pressure, Yα is
the mass fraction of species α and N is the number of species. Furthermore, τij is the
Newtonian viscous stress tensor

τij = µ

[
∂ui

∂xj
+
∂uj

∂xi
− 2

3

∂uk

∂xk
δij

]
, (2.5)

where δij is the Kronecker delta function, and µ is the mixture viscosity which is, in
general, a function of the thermodynamic state variables. For an isotropic fluid, τij
usually contains terms proportional to both shear and bulk viscosity; however, the
FD theory of Keizer (1987) clearly distinguishes between these two contributions:
whereas shear viscosity arises from molecular interactions transferring momentum
between neighbouring fluid elements, bulk viscosity is related to changes, or different
states, of internal energy. Since bulk viscosity effects generally tend to be small (see
Bird, Stewart & Lightfoot 1990), here they are neglected; the value of the bulk
viscosity is uncertain or unknown under the best circumstances. In (2.3) qIK denotes
the heat flux, where the subscript IK refers to the Irwing–Kirkwood form of the heat
flux (see Sarman & Evans 1992), and in (2.4) jα represents the species mass flux.

The governing equations for the mixing layer comprise (2.1)–(2.4) and the equation
of state whose form is discussed in § 2.3. The fluxes jα in (2.4) and qIK in (2.3) are
given by the FD theory discussed below.

2.2. The flux matrix

The primary result of FD theory is the form of the flux matrix which now contains
additional terms with respect to the familiar Fick and Fourier contributions. Following
Harstad & Bellan (2000), the molar flux, J α, and qIK can be written as a sum of a set
of functions of thermodynamic variables and transport coefficients, each multiplied
by a gradient of a thermodynamic variable:

−J α =

N−1∑
β=1

A
β
J,α∇Xβ + BJ,α∇T + CJ,α∇p,

−qIK = Aq∇T +

N−1∑
β=1

Cβ
q∇Xβ + Bq∇p,


(2.6)

where the coefficients AβJ,α, Aq, BJ,α, Bq, C
β
q and CJ,α are functions of thermodynamic

quantities and transport coefficients, as given by Harstad & Bellan (2000). Cumber-
some mathematical manipulations (see Harstad & Bellan 2000) lead to the final form
of the fluxes as

J α = −n
[
Xα(DT,α∇ lnT + Dp,α∇ ln p) +

N−1∑
γ=1

Dαγ∇Xγ

]
, (2.7)

where

DT,α ≡
N∑
β=1

Yβ

[
αIK,αβ − 1

RuT
(mαmβ/m)(h,α/mα − h,β/mβ)

]
Dm,αβ, (2.8)
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Dp,α ≡ 1

RuT
p

N∑
β=1

Yβ(mαmβ/m)(v,α/mα − v,β/mβ)Dm,αβ, (2.9)

Dαγ ≡
N∑
β=1

Dm,αβ(mβ/m)(YβαDαγ − YααDβγ) (2.10)

and

qIK = −λ′IK∇T − nRuT
(
Dqp∇ ln p+

N−1∑
γ=1

Dqγ∇Xγ

)
, (2.11)

where λ′IK is a form of the thermal conductivity

λ′IK = λIK − (ρ/T )

N∑
α>β=1

YαYβ(h,α/mα − h,β/mβ)αIK,αβDm,αβ, (2.12)

Dqp ≡ 1

RuT
mp

N∑
α>β=1

YαYβ(v,α/mα − v,β/mβ)αIK,αβDm,αβ, (2.13)

Dqγ ≡
N∑

α>β=1

(YβαDαγ − YααDβγ)αIK,αβDm,αβ. (2.14)

In our notation, Xα represents the molar fraction, T is the temperature, mα is the
molar mass, while m is the average molar mass of the mixture calculated from the
individual species molar masses, m =

∑N
γ=1 mγXγ; n = ρ/m is the molar density; v,α =

(∂v/∂Xα)T ,p,Xβ (β 6=α) is the partial molar volume, where the molar volume is v = 1/n;
h,α = (∂h/∂Xα)T ,p,Xβ (β 6=α) is the partial molar enthalpy, where the molar enthalpy is
h = G−T (∂G/∂T )p,X with G being the Gibbs energy; Ru is the universal gas constant;
Dm,αβ is the (symmetric) diffusion coefficient matrix; αIK,αβ is the (antisymmetric)
thermal diffusion coefficient matrix, representing the new set of transport coefficients
potentially important at high pressures; λ is the thermal conductivity, as limp→0 λ =
λKT (see Chapman & Cowling 1970) where the subscript KT denotes the kinetic
theory value; and the mass and molar fractions are related by Yα = Xαmα/m. The
mass diffusion factors, αDαβ , are calculated from thermodynamics as

αDαβ = ∂Xα/∂Xβ +Xα∂ ln γα/∂Xβ, (2.15)

with γα ≡ ϕα/ϕoα, where ϕ is the fugacity coefficient and the superscript o denotes the
pure (Xα = 1) limit.

For a binary mixture, such as the one considered here, we duplicate the form of
the fluxes given in Miller et al. (2001) by noting that jα = mαJ α and having α and β
take the values h (heptane) and n (nitrogen):

qIK,j = −
[
λ′IK

∂T

∂xj
+ αIKRuT

(
m

mnmh

)
j ′hj

]
, (2.16)

jhj = −
[
j ′hj + αBKYnYh

ρD

T

∂T

∂xj

]
, (2.17)

j ′hj = ρD

[
αD
∂Yh

∂xj
+
YnYh

RuT

(mnmh
m

)( v,h
mh
− v,n

mn

)
∂p

∂xj

]
, (2.18)
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where αBK is the thermal diffusion factor associated with the Bearman–Kirkwood
form of the heat flux (see Sarman & Evans 1992). For binary species, there is a single
value of the diffusion coefficient Dm,αβ so that D = Dhn = Dnh; Dhh and Dnn do not
appear in the equations. In the same manner, there is only a single value for the
thermal diffusion factors, αIK,αβ , and αIK = αIK,hn = −αIK,nh, with αIK,hh = αIK,nn = 0.
According to Harstad & Bellan (2000)

αIK = αBK +
1

RuT

(mnmh
m

)( h,h
mh
− h,n

mn

)
, (2.19)

and it is thus necessary to specify only one form of the thermal diffusion factors,
the two being related by a thermodynamic function. Also, there is a single value
of the mass diffusion factor, αDαβ , and according to the Gibbs–Duhem relationship,
αD = αD,hh = αD,nn = −αD,hn = −αD,nh.

2.3. Equations of state

Following Miller et al. (2001), we represent the binary mixture by the Peng–Robinson
(PR) equation of state (EOS) because it is computationally one of the simplest, and
because the pure species reference states were found to be accurate to better than
1% relative error through comparisons with the accurate state equations of Harstad
et al. (1997) over the range of variables used in this study. The cubic PR EOS is

p = RuT/(v − Bm)− Am/(v2 + 2vBm − B2
m), (2.20)

where Am and Bm are functions of composition and temperature (see Harstad et al.
1997 and Miller et al. 2001).

The properties of present interest are αD , h, the constant pressure molar heat
capacity Cp = (∂h/∂T )p,X , and the speed of sound as =

√
1/ρκs, all calculated in a

self-consistent manner from the same EOS, where the isentropic compressibility, κs,
is related to the expansivity, αv , and the isothermal compressibility, κT , through

κs = κT − vTα2
v/Cp, (2.21)

and

κT =
−1

v(∂p/∂v)T ,X
, αv = − (∂p/∂T )v,X

v(∂p/∂v)T ,X
. (2.22)

These equations specify the entire thermodynamics of the binary mixture. The detailed
thermodynamic expressions are presented in Miller et al. (2001).

2.4. Transport coefficients

To close the formulation, one needs to specify the transport coefficients µ, D, λ, or
alternately the Reynolds number, Re, the Schmidt number, Sc, the Prandtl number,
Pr, and αIK (or αBK).

The value of the thermal diffusion factor adopted is αIK = 0.1, determined by
Harstad & Bellan (2000) first from a model calibration through comparisons with
microgravity experiments, and further validated in the same study by comparing with
other microgravity data.

Based on accurate species transport properties calculated as in Harstad & Bellan
(1998), contour plots (not shown) of Sc, Pr and the viscosity were constructed. The
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Figure 1. Configuration of the heptane–nitrogen mixing layer.

following correlations of these contour plots:

Sc =
µ

ραDD
= 1.5− Yh, P r =

µCp/m

λ
=

Sc

2 exp(−3Yh/2)
, (2.23)

µ = µR

(
T

(T1 + T2)/2

)0.7

(T in Kelvins), (2.24)

where µR is a reference viscosity and the reference temperatures T1 and T2 correspond
to the free-stream temperatures for mixing layer simulations, rendered an accurate
quantitative representation of these quantities. Equations (2.23)–(2.24) hold in the
following range of thermodynamic state space: 500 K 6 T 6 1100 K, 40 atm 6 p 6
80 atm, and 0 6 Yh 6 1. This particular region is chosen because it is of interest both
for diesel and gas turbine engine studies.

The value of the reference viscosity is determined by the specified value of the
initial Reynolds number (see below).

3. Configuration and boundary conditions
The temporally developing mixing layer configuration is depicted in figure 1, which

shows the definition of the streamwise (x1), cross-stream (x2) and spanwise (x3)
coordinates. The upper stream (subscript 1 for free-stream values) is nitrogen and the
lower stream (subscript 2) is heptane. The layer is not symmetric in the x2-direction,
as we found in our simulations that the layer growth is considerably larger on the
nitrogen side. The specified value of the initial flow Reynolds number,

Re0 =
0.5(ρ1 + ρ2)∆U0δω,0

µR
(3.1)

is chosen low enough to permit fully resolved simulations and is used to calculate
the reference viscosity (in (2.24)). The free-stream density (ρ1 or ρ2) is calculated for
each pure species at its free-stream temperature (T1 or T2) and at the initial uniform
pressure (p0). The vorticity thickness is defined as δω(t) = ∆U0/(∂U/∂x2)max, where
U is the mean (or (x1, x3)-planar average) velocity in the streamwise direction, and
∆U0 = U1 −U2 is the velocity difference across the layer. Miller et al. (2001) explain
the choice of the velocities of the two streams, the intent being to keep the vortices
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stationary in the computational domain. While the success in this endeavour was only
partial, it proved that the choice of

U1 = 2Mc,0as1

[
1 +

(
as1
as2

)√
ρ1Z1

ρ2Z2

]−1

, U2 = −
√
ρ1Z1

ρ2Z2

U1, (3.2)

for a real fluid was reasonable, where Mc,0 is the initial Mach number and Z =
p/(ρTRu/m) is the compression factor. The specification of Mc,0 therefore determines
∆U0, and thus ultimately δω,0 ≡ δω(0). The mean streamwise velocity is smoothed
near the centreline using an error function profile, as are the mean temperature and
mass fraction.

The simulations are started with streamwise and spanwise vorticity perturbations
superimposed on the mean initial velocity profile:

ω1(x2, x3) = F3D

λ1∆U0

Γ1

f2(x2)f3(x3), (3.3)

ω3(x1, x2) = F2D

λ3∆U0

Γ3

f1(x1)f2(x2), (3.4)

where Γ1 and Γ3 are the circulations,

f1(x1) = A0

∣∣∣∣sin(πx1

λ1

)∣∣∣∣+ A1

∣∣∣∣sin(πx1

2λ1

)∣∣∣∣+ A2

∣∣∣∣sin(πx1

4λ1

)∣∣∣∣+ A3

∣∣∣∣sin(πx1

8λ1

− π

2

)∣∣∣∣ ,
(3.5)

f2(x2) = exp

[
−π
(
x2

δω,0

)2
]
, (3.6)

f3(x3) = B0 sin

(
2πx3

λ3

)
+ B1 sin

(
πx3

L3

)
. (3.7)

We use F2D = 0.1, A0 = 1, A1 = 0.5, A2 = A3 = 0.35 for the streamwise pertur-
bations, and F3D = 0.05, B0 = 1 and B1 = 0.025 for the spanwise perturbations. The
wavelengths of the perturbations are λ1 = 7.29δω,0 (the most unstable wavelength for
incompressible flow) and λ3 = 0.6λ1, following Moser & Rogers (1991). The initial
vorticity thickness δω,0 is 6.859× 10−3 m. The grid measures 0.2 m× 0.232 m× 0.12 m
for all simulations, to accommodate four wavelengths in the streamwise and spanwise
directions, and the evolution of the layer encompasses roll-up and two pairings of
the initial spanwise vortices. The larger than typical streamwise vorticity forcing
amplitude (5%, instead of 2.25% as in Miller & Bellan 2000) was necessary to entrain
the heavy heptane ((ρ2/ρ1)0 = 12.88 for the conditions of the simulations) and achieve
transition.

Periodic boundary conditions are used for the streamwise and spanwise directions,
and non-reflecting outflow conditions are used in the cross-stream direction. The real
gas outflow conditions, derived by Okong’o & Bellan (2002) and akin to the perfect
gas conditions of Poinsot & Lele (1992) and Baum, Poinsot & Thévenin (1994), are
essential since the initial perturbation causes large pressure waves (about 10% above
the mean pressure of 60 atm) which must be allowed out of the domain with minimal
reflection.



DNS of a supercritical mixing layer 9

Run Re0 N1 ×N2 ×N3 t∗trans Rem,trans

R400 400 192× 224× 112 150 972
R500 500 240× 288× 144 155 1250
R600 600 288× 336× 176 135 1452

Table 1. Simulation parameters. All runs have four initial vortices and two pairings, αIK = 0.1,
Mc,0 = 0.4, T2 = 600 K, T1 = 1000 K, and p0 = 60 atm ((ρ2/ρ1)0 = 12.88).

4. Numerics
The conservation equations were solved numerically using a fourth-order explicit

Runge–Kutta time integration and a sixth-order compact scheme for spatial deriva-
tives (Kennedy & Carpenter 1994). Time stability was achieved by following the
advice of M. Carpenter (2000, personal communication) and filtering the conservative
variables every ten time steps in the interior, in each spatial direction alternately,
using an eighth-order filter (Kennedy & Carpenter 1994). Since high-order boundary
filters were unstable, no filtering was applied at the non-periodic (x2) boundaries.
The computations were parallelized using three-dimensional domain decomposition
and message passing. The tridiagonal solver for the compact derivative scheme was
efficiently parallelized using the method of Muller & Scheerer (1991).

In our solution protocol, once the temperature, density and mass fractions are
computed, the pressure is calculated from the EOS. However, the numerical solution
is obtained for the energy rather than the temperature. To efficiently calculate the
temperature from the known energy, density and mass fraction, we use a highly
accurate fit (details in the Appendix).

5. Results
Our simulations pursue several goals. First, we want to achieve a mixing transition

state for each simulation. By our stringent criterion for mixing transition, not only
must the momentum-thickness-based Reynolds number, Rem = Re0δm/δω,0 be ‘large
enough’ (see below for the definition of δm), but we must also see other manifestations
of transition such as dramatically increased product thickness, δp, (see definition
below), continuous increase in enstrophy, development and abrupt increase in the
volume-averaged positive spanwise vorticity (due to the form of the initial mean
velocity profile, all initial spanwise vorticity is negative), and the somewhat heuristic
test of Lin & Corcos (1984) who suggest that a ‘collapse parameter’ exceeding a
threshold is indicative of transition. The discussion on the mixing layer evolution
presented below shows that these criteria have been met in all simulations. Table 1
lists the initial conditions of the simulations performed herein.

Second, we want to analyse and characterize the detailed features of the supercritical
transitional state, particularly aspects that are different from those of the much
studied temporal gaseous layers. Although lacking an experimental database for
direct comparison with our simulations (current experimental studies of supercritical
temporal mixing layers do not exist, and we aware of only the density-stratified mixing
layer experiments of Atsavapranee & Gharib 1997), we are interested in identifying
distinctive optical features that might have also been observed in spatial supercritical
mixing layers or jets. As mentioned in the Introduction, Metcalfe et al. (1987) point out
that there are optical features common to spatial and temporal turbulent shear flows.
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The third goal of our work is the identification of the physical origin of dissipation
at the transitional state. Whereas in gaseous flows it is recognized that the dissipation
is due to viscous stress effects (e.g. Liu, Katz & Meneveau 1999), this may not
necessarily be the case under supercritical conditions, owing to the additional terms
and associated transport coefficients in the transport matrix. In fact, Okong’o &
Bellan (2000) have derived the entropy equation and the form of the dissipation for
a supercritical fluid and have shown that, in addition to the viscous dissipation, there
are contributions due to mass and temperature transport.

Finally, as assumed PDF modelling is a well-accepted method for describing
turbulent flows (e.g. O’Brien 1980; Pope 1985; Frankel et al. 1993; Dopazo 1994), we
are also interested in the PDF form of the dynamic and thermodynamic variables
at the transitional state. Therefore, our fourth goal is the identification of the PDFs
at the DNS scale, as well as at a larger scale that might be envisaged for modelling
domains at the spatial scales of practical applications. We wish to explore whether
these PDFs are close to known forms used in gaseous flow PDF modelling such
as Gaussian or β densities. If they emulate the shape of known PDFs, modelling
of supercritical turbulent flows could be developed following existing methods and
benefit from available codes. The last issue of interest is the evaluation of the
current typical PDF approach to reactive flow modelling whereby the reaction rate,
a joint temperature–species (partial densities) PDF, is usually represented through
the product of the marginal PDFs. Because our DNS does not include reactions, it
represents a more favourable case for such an approach than in equivalent reacting
flow DNS since the addition of reaction will necessarily correlate the temperature
and the partial densities.

5.1. Mixing layer evolution

One of the fundamental quantities characterizing a mixing layer is its growth. Al-
though the definition of layer growth is not unique, the quantity that is most often
used to measure it is the vorticity thickness, δω . However, the fluctuations exhibited
by δω make it sometimes an unreliable measurement of growth. It is thus preferable
to measure the layer growth by the momentum thickness

δm =
1

(θ1 − θ2)2

∫ L2,max

−L2,min

−(θ2 + 〈ρu1〉)(θ1 + 〈ρu1〉) dx2, (5.1)

with θ1 = 〈ρu1〉x2=L2,max
and θ2 = 〈ρu1〉x2=−L2,min

, where 〈 〉 denotes (x1, x3) plane
averaging, L2,max = −L2/3 and L2,min = 2L2/3. Because δm is an integral quan-
tity, it does not exhibit the fluctuations inherent in δω . While the growth is primarily
a consequence of entrainment, the product thickness defined as

δp =

∫∫∫
V

ρYp dV (5.2)

in mass units, where Yp = 2 min(Yh, Yn), is a direct consequence of molecular mixing
as explained by Cortesi et al. (1999). Both δm/δω,0 and δp/δp,0 are illustrated in
figures 2(a) and 2(b), respectively, for R400, R500 and R600 (see table 1) as a
function of the non-dimensional time t∗ = t∆U0/δω,0; the only difference between
the three simulations is the value of the reference viscosity. For all runs, δm/δω,0
and δp/δp,0 display a gradual increase up to the first pairing, with indistinguishable
momentum thickness growth among runs. This latter aspect is consistent with the
fact that, at this early stage of layer evolution, the entrainment is unaffected by the
weak mixing; it is only in the further stage of layer development that the mixing
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Figure 2. Time evolution of global quantities for Re0 = 400, Re0 = 500 and Re0 = 600:
(a) momentum thickness, (b) product thickness, (c) positive spanwise vorticity, (d ) enstrophy.

becomes Re0 specific. From the first pairing, the growth rate increases to the time of
transition, t∗ = 150 for R400, t∗ = 155 for R500 and t∗ = 135 for R600. At transition,
Rem is 972 for R400, 1250 for R500, and 1452 for R600, clearly similar in magnitude
to the transition Rem obtained by Miller & Bellan (2000) for a drop-laden shear layer
and exceeding that of Moser & Rogers (1993) for gaseous layers. The slow decline of
δm/δω,0 past transition is due to the forcing, and is in fact only a temporary plateau
as the layer continues to grow, although at a reduced rate. This oscillatory growth
rate is in agreement with previous findings from gaseous flow DNS showing ‘truly’
self-similar flow profiles only for unforced, turbulent initial conditions, leading to a
linear layer growth rate (see Moser & Rogers 1991; Slessor, Bond & Dimotakis 1998).
The product thickness is a monotonically increasing function of t∗, indicating that
molecular mixing proceeds unabated.

Since vorticity, ω ≡ ∇ × u, plays a major role in turbulent flows (see Chorin
1994), we also examined global features of the flow intimately associated with ω.
In figures 2(c) and 2(d ) the volume-averaged non-dimensional positive spanwise
vorticity, 〈〈ω+

3 〉〉δω,0/∆U0, and the non-dimensional enstrophy, 〈〈ωiωi〉〉(δω,0/∆U0)
2,

evolutions are depicted as functions of t∗; here 〈〈 〉〉 denotes volume averaging. The
positive spanwise vorticity (figure 2c), initially null, increases immediately after the
layer roll-up (t∗ = 25), and grows at an accelerated rate during the entrainment period
leading to the first pairing. Further augmentation of 〈〈ω+

3 〉〉δω,0/∆U0 is the competing
result of entrainment and pairing which destabilizes the layer, and the formation of
large-|∇ρ| regions (see below) which stabilizes the layer. For all runs, 〈〈ω+

3 〉〉δω,0/∆U0

reaches maximum at transition, although as expected its value is largest for R600.
Chorin (1994) states that the most important consequence of vortex motion in three
dimensions is vortex stretching and the resulting lack of conservation of vorticity
and enstrophy. Since it is generally believed that stretching increases the enstrophy,
the variation of the enstrophy is a direct measure of this essential mechanism of
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Figure 3. Spanwise vorticity for Re0 = 600 at t∗ = 135 in (a) braid plane, (b) between-the-braid
plane. Dashed lines are negative values, solid lines are positive values.

turbulence production. Illustrated in figure 2(d ), the enstrophy displays an increase,
presenting evidence of vortex stretching and turbulence production.

Supporting the global information on the production of positive spanwise vorticity,
figures 3(a) and 3(b) portray the spanwise vorticity for R600 at t∗ = 135 in the braid
plane (x3/L3 = 1/16) and the between-the-braid plane (x3/L3 = 1/2). The creation
of positive spanwise vorticity, plotted in solid lines, implies small-scale production.

Streamwise and spanwise energy spectra for all velocity components are displayed
in figure 4 for R600 at the transitional state, demonstrating the full resolution
of the simulation for the highest Rem achieved. Clearly, most of the energy is in
the low-wavenumber regime, with the amount of energy in the high wavenumbers
being at least eight, and as much as ten, orders of magnitude smaller, and there
is no accumulation of energy at the high wavenumbers, all of which indicates that
the computation is well-resolved (see Kim, Moin & Moser 1987). The peak in the
spanwise energy spectra at a wavenumber of 4 can be attributed to the spanwise
forcing.
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Figure 5. Vorticity budgets for Re0 = 600 at t∗ = 135: (a) average ω3, (b) average ωiωi,
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To further identify the phenomena predominantly responsible for vorticity produc-
tion, we considered the budget of the vorticity equation

Dω

Dt
= (ω · ∇)u− (∇ · u) ω− ∇

(
1

ρ

)
× ∇p+ ∇×

(
1

ρ
∇ · τ

)
(5.3)

where D/Dt is the substantial derivative, and of the vorticity-magnitude-squared
equation

D(ω2)

Dt
= 2ω · (ω · ∇)u− 2(∇ · u)ω2 − 2ω · ∇

(
1

ρ

)
× ∇p+ 2ω · ∇×

(
1

ρ
∇ · τ

)
. (5.4)

Homogeneous (x1, x3)-plane averages of the spanwise vorticity and the vorticity
magnitude squared for R600, illustrated in figures 5(a) and 5(b), respectively, show
that on average stretching/tilting dominates all other effects in the production of ω3,
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and that the viscous term generally makes the major contribution to the vorticity
magnitude, although at some cross-stream locations the stretching and tilting term
may exceed the viscous contribution. These results resemble those of the layer without
transition (see Miller et al. 2001), with the exception that the stretching and tilting
contribution is entirely positive in the latter. For the mixing layer of Miller et al.
(2001) that did not transition, the primary phenomenon is the emergence of turbulent
scales being produced through stretching and tilting, whereas for the present layers,
which did reach transition, the primary phenomenon is turbulence destruction through
the action of viscosity. This conceptual picture is supported by the dominance of the
viscous terms in the production of average vorticity magnitude. The spiky aspect of
the stretching and tilting average is evidence of the concentrated action of this term at
the boundary of the coherent vortices which it mostly maps (not shown). In contrast,
most of the action of the viscous terms is inside the coherent vortices where the
small-scale formation occurs. Equivalent root-mean-square (RMS) plots, figures 5(c)
and 5(d ), exhibit the dominance of the stretching/tilting, followed by the viscous,
baroclinic and dilatation effects for both ω3 and the vorticity magnitude squared. The
predominance of stretching/tilting in the RMS, even for the vorticity magnitude, is
due to the continuing production of turbulence by the action of 3D effects. It is clear
that most of the vorticity is produced on the nitrogen side of the layer, it being the
lighter fluid.

Lin & Corcos (1984) derived a parameter measuring the vorticity focusing of
streamwise vortex sheets into concentrated round vortices, which they called the
‘collapse’ parameter. Based on their incompressible analysis, this collapse parameter
must surpass the critical value of 13 in order for a layer to achieve mixing transition.
An examination of this collapse parameter value reveals that it is 31 at t∗ = 150
for R400, 43 at t∗ = 155 for R500, and is 55 at t∗ = 135 for R600, adding a more
heuristic confirmation of transition attainment to the quantitative analysis presented
above.

5.2. Visualizations of the thermodynamic variables at the transitional state

Flow visualizations usually reveal aspects that may be spatially evident, but may
disappear upon averaging. Moreover, these visualizations might be essential in
identifying the distinct optical features common to temporal and spatial mixing
layers.

In a previous study, Miller et al. (2001) have illustrated |∇ρ| for a layer that did not
reach transition and identified concentrated regions where |∇ρ| reached large values.
The qualitative comparison between these regions and the optical observations of
Chehroudi et al. (1999) who experimentally identified ‘wisps’ of fluid emerging from a
supercritical jet injected into a supercritical medium were encouraging. The question
is whether the same qualitative features may be identified at transition, and if so
what is the large-|∇ρ| region composition and thermodynamic state. To explore
these aspects, |∇ρ|, Yh and αD are displayed in figures 6(a, b), 6(c, d), and 6(e, f),
respectively, in the braid and the between-the-braid planes. Not only are the regions
of concentrated large |∇ρ| values again evident, but they also appear considerably
more convoluted than in the study of Miller et al. (2001), owing to the turbulent
scales distorting the large-|∇ρ| regions formed as a result of entrainment and mixing.
The heptane mass fraction contours show parcels of heptane fluid that have ‘broken
off’ from the original stream and have been transported towards the upper nitrogen
stream. The mixing region thus formed contains non-ideal fluid (αD < 1) as shown in
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Figure 6. Contours of (a, b) density gradient magnitude, (c, d) heptane mass fraction and (e, f)
mass diffusion factor in braid plane (a, c, e) and between-the-braid plane (b, d, f) for Re0 = 600 at
t∗ = 135.

figures 6(e) and 6(f), whereas the two regions of unvitiated species behave as ideal
mixtures.

The striking visual correlation between the regions of large |∇ρ|, disintegrated Yh
and minimal αD provided the motivation to further investigate the composition of
the fluid in these regions and its degree of mixing. Conditional averages for both
braid and between-the-braid planes are listed in tables 2 and 3, and show that the
fluid in the large-|∇ρ| regions is mostly heptane, but that nitrogen has dissolved into
it. This fluid has difficulty in mixing at the molecular level, evidenced by the lower
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Cutoff Average Yh Average αD

0.3|∇ρ|max = 3.47× 104 0.904 0.645
0.2|∇ρ|max = 2.31× 104 0.887 0.658
0.1|∇ρ|max = 1.16× 104 0.840 0.688

Table 2. Conditional averages of heptane mass fraction and of mass fraction diffusion factor over
regions where |∇ρ| > cutoff. The calculations are made in the braid plane at t∗ = 135 for R600.

Cutoff Average Yh Average αD

0.3|∇ρ|max = 3.08× 104 0.921 0.638
0.2|∇ρ|max = 2.06× 104 0.910 0.649
0.1|∇ρ|max = 1.03× 104 0.869 0.679

Table 3. As table 2 but for calculations in the between-the-braid plane.

Braid plane Between-the-braid plane Global

Yh, |∇ρ| Correlation 0.30 0.32 0.31
αD, |∇ρ| Correlation −0.60 −0.62 −0.62
|∇ρ|max 1.16× 105 1.03× 105 1.35× 105

Table 4. Correlations with |∇ρ| at t∗ = 135 for R600.

than unity value of αD . With increased cutoff value for the proportion of |∇ρ|max

on which the Yh and αD averages are conditioned, the fluid composition becomes
closer to heptane, and the molecular mixing becomes increasingly hindered. Finally,
a plane-based correlation

R(X,Y) =
〈XY〉 − 〈X〉〈Y〉√

(〈X2〉 − 〈X〉2)(〈Y2〉 − 〈Y〉2) (5.5)

listed in table 4 for R600, where X and Y are generic variables, confirms the
conditional-average results. |∇ρ| and Yh are only moderately correlated, whereas |∇ρ|
and αD are more strongly correlated and while |∇ρ| increases, αD decreases. The
information obtained so far indicates that the regions of large |∇ρ| are formed as
a result of two different processes. The first process is dynamic and results in the
convolution of the original density boundary. The second process is a combination
of thermodynamics and transport mechanisms, through solvation and mass diffusion,
respectively. Both of these processes determine the structure of the large-|∇ρ| regions
at the transitional state.

Figure 7 depicts the compression factor and shows that the mixture exhibits larger
departures from a perfect gas with increasing cross-stream penetration into the lower,
heptane stream. In addition to the strong departures from mixture ideality, these
considerable departures from perfect gas behaviour indicate that the real gas EOSs
are essential in the mathematical description of the present situation. From the
numerical method viewpoint, this highlights the importance of characteristic wave
boundary conditions based upon real gas EOSs, particularly on the heptane side
where Z ' 0.5 (Z = 1 for a perfect gas).

Since the layer region contains a mixture of fluids, and because the critical point
of a mixture is a function of its composition, we investigated the thermodynamic
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Figure 7. Contours of compression factor for Re0 = 600 at t∗ = 135 in (a) braid plane,
(b) between-the-braid plane.

state of the mixture in both braid and between-the-braid planes. Calculated here
according to Peng & Robinson (1977) and plotted in figure 8(a), the critical point
occurs when both the determinant of the second derivatives of G, |U |, and that of the
second derivatives of G combined with the first derivatives of |U | are null. Since

αDαβ = βXα(∂
2G/∂Xα∂Xβ)p,T ,Xγ(γ 6=α,β)

, (5.6)

a necessary condition for attaining the critical point for a binary species system is that
αD = 0. Note that the critical temperature, Tc, has a maximum of 540 K, whereas the
critical pressure, pc, has a maximum of 8735 atm; therefore at our initial conditions of
T1 = 1000 K, T2 = 600 K and p = 60 atm, the temperature is supercritical everywhere,
and the pressure is subcritical for 0.01 < Yh < 0.92. Since αD > 0 in figures 6(e)
and 6(f), preliminary indications are that the critical point is not reached. These
indications are confirmed by illustrations of T −Tc and p−pc in figures 8(b) and 8(c)
respectively; only the braid-plane contours are shown, the between-the-braid-plane
contours being similar. Indeed, when p > pc or T > Tc, in the (p, T )-plane there
is no longer the possibility of a two-phase (e.g. gas/liquid) region and instead there
is only a single-phase region (see discussion in Harstad & Bellan 2001). Clearly,
since (T − Tc) > 0 everywhere, the fluid is supercritical in the entire plane. It is
noteworthy that p − pc displays both positive and negative regions with the null
contour mapping the coherent vortices, which contain the mixed fluid. Outside these
vortices, (p − pc) > 0, conforming to the free-stream conditions. On the other hand,
inside the vortices there is a region of high vorticity, low pressure. The fact that the
pressure level fell from supercritical in the free stream to below the critical pressure
inside the vortices is due to the change in composition which led to a change in the
local critical pressure.

5.3. Irreversible entropy production (dissipation)

The entropy production is a quantity of great interest because it contains a measure
of the important phenomena determining, in particular, the fate of a turbulent flow.
Entropy production may be of the reversible type, coming from fluxes at the boundary
of the domain under consideration, or of the irreversible type; the irreversible entropy
production is in fact the dissipation. Information about the dissipation can be useful
in many ways, one of which is the modelling of the small-scale behaviour; for example,
because it is precisely the small-scale dissipation which must be duplicated by subgrid
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scale (SGS) models in large-eddy simulations, Liu et al. (1999) used this information
to model the SGS viscous stresses.

Okong’o & Bellan (2000) derived the entropy equation for a supercritical flow and
showed that if g denotes the rate of irreversible entropy production, then

g = gvisc + gtemp + gmass, (5.7)

gvisc =
µ

T
(2SijSij − 2

3
SkkSll), gtemp =

λ

T 2

∂T

∂xj

∂T

∂xj
,

gmass =
1

YnYhρD

Rum

mnmh
jhjjhj , (5.8)
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t∗ Braid plane Between-the-braid plane Global

105 0.526 0.170 0.335
120 0.533 0.524 0.394
135 0.506 0.453 0.416

Table 5. Correlations between |∇ρ| and g for R600.

where according to (2.17) and (2.18), gmass contains the departure from mixture non-
ideality, ∝ αD , and the Soret term, ∝ αBK , (through jhj). The question arises of
the importance of each of gvisc, gtemp and gmass at various stages of the transitional
supercritical mixing layer evolution and of possible correlations of high g-activity
regions with the regions of large |∇ρ| which seem to play a pivotal role in determining
the characteristics of the layer transitional state. To explore these topics, we calculate
the gvisc, gtemp, gmass and g volume averages, RMS, and their small-scale contribution.
The small-scale contribution is calculated by filtering the DNS solution with a
cubic top-hat filter having a filter width ∆ = 4 max(∆x1,∆x2,∆x3), where ∆xi is the
computational grid spacing, and calculating the difference between the unfiltered and
filtered solution. These calculations were performed at two times past the second
pairing but prior to transition, and at transition; e.g. for R600 the selected times were
105, 120 and 135. For each of the g terms, (x1, x3)-plane averages were plotted (not
shown) both at the DNS and filtered scales. Also, visualizations of g and |∇ρ| both
in the braid and between-the-braid planes (not shown) were scrutinized for possible
visual correlations. Contour plots of the dissipation illustrated the occurrence of
strong dissipation almost exclusively within the regions of large |∇ρ|. This finding
is in agreement with the experimental results of Hannoun, Fernando & List (1988)
who observed that a density interface is very effective at damping turbulent eddies,
which upon impingement ‘bounce’ back without significant entrainment of unstirred
fluid, instead of overturning. The present dissipation plots displayed a topologically
continuous aspect on the nitrogen side, whereas on the heptane side, pockets of
high dissipation were exhibited. To quantify these visualizations, the plane correlation
between g and |∇ρ| was calculated and is listed in table 5. The results show that the
variables are moderately correlated in both the braid and between-the-braid planes,
and that the global correlation coefficient increases as the layer evolves towards
transition.

Tables 6 and 7 contain the values of the unfiltered and SGS domain-averaged
irreversible entropy production for R600; the results are typical of all simulations.
The species mass flux contribution dominates both the unfiltered and the SGS
by a factor of 5 over the next larger gtemp contribution, consistent with the large
effective Lewis number under supercritical conditions (see Harstad & Bellan 1999).
The ratios gmass/g and gSGSmass/g

SGS displayed in tables 6 and 7, respectively, show that
approximately 77% of the average and small-scale dissipation at t∗ = 135 is due to
species mass fluxes, with a percentage only marginally larger at the previous two times.
gtemp represents at most 17% of g, and gSGStemp/g

SGS is at most 16.4%. The smallest
contribution is that of gvisc (the maximum being just in excess of 6%), in sharp
departure from atmospheric-pressure mixing layers that are dominated by viscous
effects (e.g. Moser & Rogers 1993). Table 8 documents the domain average ratio of
the small scales of each of gvisc, gtemp, gmass to the average g and to their average
respective contribution (i.e. gvisc, gtemp, gmass). Clearly, a substantial amount of the total
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t∗ = 105 t∗ = 120 t∗ = 135

(W m−3 K−1) gk/g (W m−3 K−1) gk/g (W m−3 K−1) gk/g

gvisc 8.20× 104 0.065 7.73× 104 0.058 7.91× 104 0.062
gtemp 1.97× 105 0.157 2.22× 105 0.166 2.18× 105 0.170
gmass 9.74× 105 0.778 1.04× 106 0.777 9.83× 105 0.768
g 1.25× 106 1.000 1.34× 106 1.000 1.28× 106 1.000

Table 6. Average irreversible entropy production, for R600. k = visc; mass; temp.

t∗ = 105 t∗ = 120 t∗ = 135

(W m−3 K−1) gSGSk /gSGS (W m−3 K−1) gSGSk /gSGS (W m−3 K−1) gSGSk /gSGS

gSGSvisc 2.17× 104 0.065 1.88× 104 0.061 1.96× 104 0.068
gSGStemp 4.89× 104 0.147 4.88× 104 0.159 4.77× 104 0.164
gSGSmass 2.62× 105 0.788 2.40× 105 0.780 2.23× 105 0.768
gSGS 3.32× 105 1.000 3.08× 105 1.000 2.90× 105 1.000

Table 7. Average SGS irreversible entropy production, for R600. k = visc; mass; temp.

t∗ = 105 t∗ = 120 t∗ = 135

gSGSk /g gSGSk /gk gSGSk /g gSGSk /gk gSGSk /g gSGSk /gk

gvisc 0.017 0.264 0.014 0.243 0.015 0.248
gtemp 0.039 0.249 0.036 0.220 0.037 0.219
gmass 0.209 0.269 0.179 0.231 0.174 0.226
g 0.265 0.230 0.226

Table 8. Small-scale contribution to the average dissipation and to the respective mode of dissipation
for R600. k = visc; mass; temp. The values of gSGSk /gk should not be calculated as the ratio of
gSGSk /g from this table to gk/g from table 6, as round off errors yield incorrect values.

average dissipation is due to the small-scale action of the species mass flux, and the
ratio gSGS/g slightly decreases as the transitional state is approached, reaching then
about 23%. This finding also contrasts with the situation for atmospheric-pressure
mixing layers where the small-scale dissipation is of viscous origin. The contribution
of the small scales to their respective average dissipation mode shown in table 8 is
consistently highest for gmass; the values of gSGSk /gk in table 8 should not be calculated
as the ratio of gSGSk /g from the same table to gk/g from table 6, as round-off errors
yield incorrect values. Remarkably, the small-scale contribution for all modes ranges
between 22% and 27%, a rather narrow range, and decreases as the transitional state
is approached, this being attributable of the increasing destruction of small scales
through dissipation.

To determine the location of the primary activity in the dissipation, homogeneous
(x1, x3)-plane averages of gvisc, gtemp, gmass at t∗ = 105, 120 and 135 were calculated;
those at t∗ = 135 are illustrated in figures 9(a) (average) and 9(b) (RMS). At all
three times, and consistent with the global analysis, the overwhelming activity is from
gmass, both for the average and the RMS. Prior to transition, the peaks of the average
and RMS occur at the same location, which is at the boundary between the two
fluids. As the transitional state is approached, the RMS peaked region narrows and
exhibits sharper peaks, indicating an increased level of fluctuations. At transition, the
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Figure 9. Contributions to dissipation for Re0 = 600 at t∗ = 135: (a) average, (b) RMS.
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Figure 10. Contributions to the species mass flux dissipation, gmass, for Re0 = 600 at t∗ = 135:
(a) average, (b) RMS.

average (figure 9a) appears overwhelmingly located on the nitrogen side, where the
mass fraction gradients are large, whereas the RMS has strong and sharp peaks on
the heptane side of the layer, where most of the regions of high |∇ρ| reside. These
sharp peaks correspond to the pockets of strong dissipation detected on the heptane
side of the layer in the contour plots. This indicates that although most of the average
dissipation occurs on the nitrogen side of the layer, most of the fluctuations in the
dissipation are associated with the region of high |∇ρ|, which they follow during
the layer evolution. gtemp is approximately one order of magnitude smaller than gmass
and its maximum activity is on the nitrogen side of the layer where the temperature
gradients are largest. The gvisc contribution is negligible, being approximately two
orders of magnitude smaller that of gmass.

Because gmass is proportional to jhjjhj , and since jhj contains three terms (see (2.17)
and (2.18)), it is intriguing to elucidate the contribution of each of the six terms
to gmass. Displayed in figure 10 are these various contributions, with the notation
gmass(Yh, Yh) ∝ (αDD)2∇Yh · ∇Yh, etc. Clearly, the Fick diffusion term contributes
overwhelmingly to the average (figure 10a) on the heptane side of the layer, with
significant contribution on the nitrogen side as well; at positions close to the nitrogen
free stream, the cross-term gmass(Yh, T ) ∝ αDD αBK dominates all other terms. The
RMS (figure 10b) is even more strongly dominated by gmass(Yh, Yh) on the heptane
side, and competes in magnitude on the nitrogen side with gmass(Yh, T ). The gmass(T ,T )
has a modest contribution to gmass, and all other terms are negligible. These results
highlight the importance of the molecular diffusion in determining the dissipation,
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t∗ = 105 t∗ = 120 t∗ = 135

gvisc 34.7 33.8 33.2
gtemp 42.8 39.4 40.4
gmass 49.2 45.9 46.5
g 39.9 39.0 40.9

Table 9. Backscatter of entropy dissipation modes for R600. The listed numbers are % of points
in the domain where the SGS contribution of the quantity has a negative value.

and the significant role of the Soret effect in the modelling of supercritical transitional
flows.

Similar calculations to those presented in table 8 conducted for the domain-
averaged RMS (not displayed), instead of the average dissipation values, also show
the dominance of the species flux contribution. Furthermore, the domain RMS of both
gSGSmass/gmass and gSGSmass/g are considerably larger than those of the average dissipation
(88%, 76% and 58% for gSGSmass/gmass, and 81%, 67% and 47% for gSGSmass/g at t∗ = 105,
120 and 135), this being a manifestation of the important role of the subgrid scales
in the RMS of the dissipation.

Of significance is the fact that equivalent tables (not shown) to tables 6 and 7,
now calculated for the RMS dissipation, show values that are always about one
order of magnitude larger than the corresponding average values, indicating that the
flow displays considerable backscatter. To ascertain the role of backscatter, listed
in table 9 is the percentage of domain points where each of the dissipation modes,
gvisc, gtemp, gmass, and the total dissipation, g, are negative. For all dissipation modes
there is a substantial number of points in the domain where backscatter occurs. The
most widespread backscatter is manifested by the species mass flux dissipation mode,
occurring over more than 49% of the domain at the earliest time and over 46% of
the domain at transition. The regions of gtemp-generated backscatter are almost as
widespread as those corresponding to gmass while the gvisc activity is the most modest.

These results reveal that turbulence modelling in the context of supercritical mixing
layers must concentrate on species mass flux rather than viscosity effects, as they
govern all aspects of dissipation as well as backscatter. The regions of high density
gradient magnitude are instrumental in providing the venue for the dissipation.

5.4. PDF representation

Probability density function (PDF) methods have received much attention in describ-
ing reacting flows (e.g. O’Brien 1980; Pope 1985, 1991; Frankel et al. 1993; Dopazo
1994) because they circumvent some of the need for turbulence modelling. One may
distinguish two classes of PDF methods. In the first approach, the evolution equation
for the PDF is solved. This method is potentially attractive primarily because of the
inherent ease in treating reaction terms, which in this formulation do not need to be
modelled. Although much progress has been made in this area (see Pope 1985, 1991;
Dopazo 1994), there are still difficulties in the treatment of the diffusion terms, and
the approach remains computationally expensive. The second PDF method is called
the ‘assumed PDF’ approach and consists of assuming the mathematical form of the
PDF to close the mean chemical source terms in the equations (e.g. Frankel et al.
1993). To adopt the assumed PDF approach, one needs to calculate a finite number
of moments of the assumed PDF in order to construct it according to well-known
methods in probability theory (Papoulis 1991). Generally, these moment equations
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Figure 11. Planar PDF of heptane mass fraction for Re0 = 600 at (a) t∗ = 25, (b) t∗ = 75,
(c) t∗ = 105, (d ) t∗ = 135.

are derived from the conservation equations, and the inherent unclosed terms thus
formed are modelled according to the best known physics. The moment equations
are then solved together with the other conservation equations. Two typical PDF
forms used for atmospheric gaseous flows are the β and the Gaussian densities, both
of which are entirely defined from their first two moments. Their advantage is the
accommodation of the description of completely segregated species with, for shear
layers, initial peaks in the two streams (β density), and the asymptotic completely
mixed state (Gaussian).

Here, we focus on the assumed PDF approach and address two questions. First,
we are interested in exploring the possibility of using the assumed PDF approach for
describing the evolution of the supercritical mixing layer from the segregated state
to transition. The issue of the accurate calculation of the necessary moments (the
solutions of modelled differential equations; see above) will not be addressed here.
Instead, we will decouple the two separate issues of accurate moment calculation and
assumed form of the PDF by adopting the values obtained by DNS in the construction
of the PDFs. With the accurate moments, we will compare the assumed PDF with
that extracted from the DNS to determine if the method would be appropriate for the
present situation. This assumed PDF would represent the best attainable model since
the moments are exact. Related to assumed PDF modelling, we also address the issue
of whether the temperature and composition PDFs are correlated, since ascertaining
this is of interest in the modelling of reaction rate terms through a joint PDF. The
second question that we wish to address is that of the form of the PDF at the subgrid
scale. Since LES have emerged as a powerful computational tool, it is of interest to
inquire if PDF-based subgrid-scale modelling could be a useful approach.

5.4.1. Assumed PDF representation

Illustrations of the conserved scalar, here the species mass fraction, PDF are
presented in figures 11(a)–11(d ) for four different values of t∗ appropriately chosen
to represent stations before the first pairing, after the first pairing, after the second
pairing and at transition for R600; the results (not shown) are similar for R400
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and R500. In all these figures, the null and unity Yh-planes were removed, to give a
more discernible pictorial representation. Even at the earliest time, t∗ = 25, heptane
has already penetrated into the upper stream; however, the general features are
those of laminar mixing. Past the first pairing (t∗ ' 50), entrainment initiates the
production of small scales and mixing, as depicted in figure 11(b) showing the
PDF at t∗ = 75. Further pairing at t∗ ' 85 induces additional entrainment with
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consequently increased mixing as evidenced in figure 11(c) showing the t∗ = 105 PDF.
Finally, at the transitional state, t∗ = 135, the very convoluted PDF of figure 11(d )
exhibits the attributes of intense mixing.

To explore the possibility of these PDFs being represented by a Gaussian, the
skewness, M3 = 〈(φ − 〈φ〉)3〉/σ3, and kurtosis, M4 = 〈(φ − 〈φ〉)4〉/σ4, where the

standard deviation is σ =
√〈(φ− 〈φ〉)2〉, were calculated at the four time stations for

planes with 〈Yh〉 between 0.005 and 0.995 and compared with the known respective
values of 0 and 3 of the Gaussian. The results are displayed in figure 12(a) to 12(h),
where the skewness and the kurtosis of the β density were plotted for comparison,
with the β statistics based on the exact (i.e. DNS calculated) mean and variance.
Clearly, both the skewness and kurtosis of the DNS PDF approach the Gaussian
values in the middle of the layer as the layer evolves towards the transitional state.
Although the comparison is favourable in the middle of the layer, departures from
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the Gaussian values can be seen at the edge of the layer, indicating that perhaps the
emulation of the DNS PDF by the Gaussian is not appropriate. On the other hand,
the β-density skewness and kurtosis compare favourably with the DNS calculated
values, indicating that possibly the β PDF may be a good representation of the
DNS PDF. To check this possibility, we calculated the planar PDF at t∗ = 135 and
display it in figure 13. The three cross-stream locations at which the planar PDFs are
illustrated are representative of the comparison between the DNS extracted PDF, the
Gaussian and the β density. It is evident that neither the Gaussian, nor the β density
can duplicate the humps of the exact PDF; this shows that approximate agreement of
the moments does not necessarily imply agreement of the PDFs. Based on this limited
comparison for three realizations, it appears that the much utilized PDF shapes for
perfect gases and ideal mixtures may not be appropriate for real fluids and non-ideal
mixtures.

A recent and comprehensive example of assumed PDF treatment is that of Baurle
& Girimaji (1999) who extended the typical utilization of this method, whereby the
joint temperature–composition PDF is assumed to be the product of the marginal
PDFs, by including cross-correlation effects between temperature and species partial
densities; this study was conducted for atmospheric pressure. Baurle & Girimaji (1999)
correctly note that assuming the joint temperature–species PDF to be the product of
the marginal PDFs implies that there is statistical independence between temperature
and partial species densities. This assumption is questionable since in fact the EOS
relates the temperature to the partial density. At high pressures where the flux matrix
is enlarged to contain the additional influences of the mass fraction gradients on
the temperature and vice versa, the temperature and partial-density PDFs might
be even more correlated. To check whether the marginal PDFs are correlated, we
calculated the correlation coefficient between the DNS-generated PDFs. It should be
emphasized that because the present DNS does not include chemical reactions, which
will necessarily induce a temperature and composition PDF correlation (see Baurle &
Girimaji 1999), our test of whether the two PDFs are correlated represents the most
favourable outcome that could be expected for modelling the joint PDF as a product
of the marginal PDFs. Displayed in figure 14(a) is the DNS correlation between
T and ρYh as a function of the cross-stream location. The temperature and partial
density are clearly well and negatively correlated, indicating that the approximation
of the joint PDF by the product of the marginal PDFs is inaccurate. The good
correlation between the T and ρYh PDFs is attributable to the form of the flux
matrix, (2.6), showing the coupling between molar fluxes and temperature gradients
and between the heat flux and mass fraction gradients; this coupling is negligible
at atmospheric pressures where the flux matrix is uncoupled (see Harstad & Bellan
1999). To emphasize the different characteristics of the joint PDF and the product of
the marginal PDFs, plotted in figures 14(b) and 14(c) are contours of both of them.
Notably, both the shape and the magnitude of the these two PDFs are different,
consistent with the high correlation between T and ρYh.

5.4.2. Subgrid-scale PDFs

For the special case of top-hat filters, the filtered value is the volume average
within the filtering volume, φ̄ = (

∫
Vf
φ dV )/Vf , where Vf is the filtering volume. In

our calculations where each point has a filtering volume associated with it, when the
flow field is filtered, each point within a given filtering volume may have a different
value of φ̄. Thus, to emphasize that the PDFs are calculated within filtering volumes,
we denote the filtered value (or volume average) for the filtering volume as φ̄0; then,
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Figure 14. Correlation of heptane density and temperature for Re0 = 600 at t∗ = 135:
(a) planar correlation, (b) joint PDF, (c) product of marginal PDFs.

by definition each point within the filtering volume will have the same φ̄0, which is
equal to φ̄ only at the point with which this particular filtering volume is associated.
According to Cook & Riley (1994), the PDF within the filtering volume should be
calculated relative to φ̄0, with the subgrid standard deviation, σSGS , given by

σ2
SGS (φ) ≡ (φ− φ̄0)2 = φφ− 2φφ̄0 + φ̄0φ̄0 = φ2 − φ̄2. (5.9)

Therefore, any subgrid PDF calculated herein is centred at the Favre average mean
(φ̃ = ρφ/ρ̄) in the filtering volume.

Pope (1991) promoted the concept of ‘filtered density function’, FDF, which is
essentially the PDF of the variables at the subgrid scale. The FDF concept is
potentially useful in reacting flows where the effects of the scalar fluctuations may be
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modelled in a LES through the FDF. Colucci et al. (1998) have shown that a transport
equation may be derived for the FDF in which the effect of the chemical reaction
appears in closed form, but in which the effects of the scalar mixing and convection
within the subgrid must be modelled. Here we wish to take an alternative direction
to the approach of Colucci et al. (1998) by exploring the assumed PDF concept in
the determination of the FDF, similar to the two PDF approaches (solution of the
PDF equation versus assumed PDF method) at the larger scale. In this context, we
inquire whether the subgrid reaction rate, which is a joint temperature–species PDF,
may be assumed to be the product of the marginal PDFs. Illustrated in figure 15
is the correlation between T and ρYh in the filtering volumes for R600 at t∗ = 135.
Similar to the DNS PDF, the subgrid T and ρYh (centred at the mean in each filtering
volume) are well (negatively) correlated, indicating that the product of the marginal
PDFs is not an accurate approximation of the subgrid reaction rate which is the joint
PDF of the temperature and the partial species density.

To further explore the shape of the subgrid PDF, and the assumed PDF method
for the passive scalar (here the species), displayed in figure 16(a) are the subgrid
PDFs of all variables for R600 at t∗ = 135. Although the global shape of the PDFs
is Gaussian, the numerous large peaks, especially those of Yh make it very uncertain
that it can capture the specific physics of the situation. The origin of these peaks
was investigated by performing another calculation where the PDFs were computed
in the same manner as those in figure 15(a), except that the range of the variables
was limited to be inside the layer. Since the layer has different widths according to
the variable, Yh and T were calculated in their own layer width, u1, u2 and u3 were
conservatively calculated in the narrowest layer width (that of u1), and since the p
layer was not evident, the value adopted was that of the T layer because of the strong
coupling between these two variables through the EOS. The results are illustrated in
figure 16(b). A comparison between figures 16(a) and 16(b) leads to the conclusion
that the peaks in figure 16(a) are due to intermittency effects at the edge of the layer;
clearly, the Gaussian profile cannot model these important intermittency effects.
Moreover, examination of figure 16(b) reveals that even without the intermittency
effects, the humps around the mean, especially large and asymmetric for Yh, cannot
be emulated by the Gaussian PDF. This comparison between the simulation derived
PDFs and the Gaussian sheds doubt on the usefulness of the assumed FDF approach
for supercritical flow subgrid-scale modelling.
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6. Summary and conclusions
Specific aspects characterizing the behaviour of supercritical mixing layers have

been elucidated through direct numerical simulations (DNS). The conservation equa-
tions contain the full transport matrix according to fluctuation-dissipation theory,
incorporating thermal diffusion effects. The adopted value of the additional trans-
port coefficient thus introduced is that determined in a previous study. The real gas
equation of state used in conjunction with the dynamic conservation equations was
also employed to calculate the mass diffusion factor which quantifies a mixture’s
departure from non-ideality. The Schmidt and Prandtl numbers were accurate over
the thermodynamic range of the simulations, emulating values obtained from contour
plots based on accurate transport properties. The boundary conditions were periodic
in the streamwise and spanwise directions, and based on real-gas characteristic waves
exiting the domain without reflection in the cross-stream direction.

Three simulations were conducted for a heptane (lower stream) and nitrogen (upper
stream) configuration, having initial Reynolds numbers of 400, 500 and 600. All
simulations were fully resolved, and for the largest Reynolds number the calculation
encompassed in excess of 17× 106 grid points. The three simulations were carried to
mixing transition states obtained after two pairings of the initial four spanwise vortices
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present in the layer. The transitional state was identified by global manifestations
such as rapid and sustained momentum thickness growth, high rate of positive
spanwise vorticity evolution, increased enstrophy, large product thickness, and large
momentum-thickness-based Reynolds number. Analysis of the vorticity and vorticity
magnitude budgets at transition highlighted the dominance of the stretching and
tilting effect in the production of spanwise vorticity, and of the viscous contribution
in the vorticity magnitude, although at some cross-stream locations stretching and
tilting exceeded viscous effects.

Visualizations of the spanwise vorticity at the transitional state revealed con-
siderable local positive vorticity in both the braid and between-the-braid planes.
Furthermore, the layer exhibited concentrated regions of high density gradient mag-
nitude, which displayed a convoluted and distorted appearance; these regions are
specific to the supercritical aspect of the layer. Given the commonality of distinctive
optical features between temporal and spatial shear layers, the existing observation
of such regions in supercritical jet experiments provides encouragement that the
essence of the physics has been captured. Analysis of the fluid composition in these
regions of high density gradient magnitude revealed that the predominant species
is that in the lower, entrained stream with small amounts of the entraining fluid
transported and dissolved into it. Moreover, considerations based on the value of the
mass diffusion factor identified these regions as containing a highly non-ideal mixture,
implying mixing difficulties at the molecular level resulting from the thermodynamic
properties of the mixture. Visualizations of the compression factor displayed large
departures from perfect gas behaviour in the lower heptane stream as well as in the
mixing layer. Neither departures from perfect gas behaviour, nor deviations from
mixture non-ideality have previously been identified in DNS of transitional mixing
layers.

The novel thermodynamic characteristics of the layer prompted an investigation
of the thermodynamic state of the mixture at transition through examination of
departures from the critical locus in both the braid and between-the-braid planes.
The fluid is supercritical everywhere, as the temperature is always larger than that
of the local critical point. However, the pressure is above the local critical point outside
the vortices and below the local critical point inside with the critical locus mapping
the coherent vortices. The considerable reduction in the difference between the local
values of the pressures and critical pressure inside the vortices is due to the change
in fluid composition. These features are specific to the supercritical, transitional state
of the layer.

To investigate the primary mechanisms responsible for dissipation both during
the evolution of the layer and at transition, the irreversible entropy production was
calculated and analysed. The three contributions to the dissipation arising from
viscous stresses, species mass fluxes and heat fluxes were calculated and compared.
Volume averages as well as RMS were computed at time stations after the second
pairing, but prior to transition, and at transition. Moreover, by filtering the DNS
solution and calculating the difference between the filtered and unfiltered variables, the
contribution of the small scales (SGS) was evaluated. The overwhelming contribution
both to the average and the RMS dissipation, as well as to the SGS dissipation,
is due to species mass flux effects. The primary contribution to the species mass
flux dissipation is due to Fick’s diffusion term with an important participation of
the product between the diffusion and the Soret terms. Furthermore, the species
mass flux contribution to the dissipation has the most widespread backscatter. The
viscous contribution is the smallest in all these important aspects of dissipation.
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Therefore, supercritical transitional mixing layers are fundamentally different from
their atmospheric-pressure counterpart, which are dominated by viscous effects.

Since the transitional state is dominated by species mass flux effects, it is clear that
turbulence models must predominantly focus on emulating the species mass fluxes
and the Soret effects rather than the momentum flux (viscous stresses). Of significance
is the observation that both the species mass flux and the Soret term will, in general,
be species system specific. Therefore, ascertaining the species-dependent aspects of
supercritical mixing layer behaviour will constitute one of our future priorities.

Assumed PDF modelling, of particular interest for reacting flow representations,
was shown to have only limited potential. Neither the β density nor the Gaussian
PDF, both constructed using the DNS calculated moments, predict reliably the mixing
process or the transitional state, respectively. The same result is found at the subgrid
scale. Moreover, the temperature and partial density PDFs are well (negatively)
correlated, indicating that the prospects of modelling the reaction rate, which is a
joint temperature–species PDF, by the product of the marginal PDFs are poor. This
good correlation was obtained both for the DNS-scale PDF and the SGS-scale PDF
(the filtered density function of Pope 1991). Finally, it should be mentioned that the
conclusions regarding the PDF representation are the result of studying only three
realizations. Additional work will be necessary to obtain more definitive conclusions.
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Appendix. Temperature fit
Following Miller et al. (2001), the relationship between temperature and energy is

taken as

T =

[
(TL)θ +

(
e− eL
eU − eL

){
(TU)θ − (TL)θ

}]1/θ

, (A 1)

where the subscripts L and U refer to the lower and upper limit of validity of the fit,

θ = 1.048 + 0.601Y 0.432
h , (A 2)

eL = e1 +

[
ρ− ρL
ρU − ρL

]
(e2 − e1), (A 3)

eU = e3 +

[
ρ− ρL
ρU − ρL

]
(e4 − e3), (A 4)

and the upper and lower bounds are ρL = 6, ρU = 286, TL = 500 and TU = 1100
with the density in kg m−3 and the temperature in K (this regime is larger than that
of Miller et al. 2001). The limits of the density correspond to the pressure limits of 40
and 80 atm (see table 10 for pure species properties). Third-order polynomial fits were
obtained for the four remaining internal energy functions e1(Yh;TL, ρL), e2(Yh;TL, ρU),
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Species m (kg kmole−1) Tc (K) pc (atm) vc (m3 kmole−1) Zc

Nitrogen 28.013 126.26 33.55 0.0898 0.290
Heptane 100.205 540.3 27.04 0.432 0.263

Table 10. Pure species properties.

Energy (J kg−1) E0 E1 E2 E3

e1(Yh;TL, ρL) 3.6116× 105 3.4529× 105 −1.3409× 103 3.2521× 100

e2(Yh;TL, ρU) 3.2562× 105 2.8543× 105 −4.8335× 104 2.5565× 103

e3(Yh;TU, ρL) 8.6099× 105 1.7846× 106 −1.4587× 103 3.5423× 100

e4(Yh;TU, ρU) 8.5152× 105 1.7604× 106 −5.5374× 104 3.0859× 103

Table 11. Polynomial curve fit coefficients.

e3(Yh;TU, ρL) and e4(Yh;TU, ρU) as follows

ek = E0 + E1Yh + E2Y
2
h + E3Y

3
h , k = 1, 2, 3, 4, (A 5)

where the coefficients are provided in table 11. This particular fit achieves better than
1% maximum relative error when compared to the PR internal energy.
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